Author Affiliations
Abstract
College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
For Brillouin optical time-domain analysis (BOTDA) based on distributed Brillouin amplification (DBA), constant Brillouin response achieved by the exponentially variable bandwidth/intensity pump modulation suffers from the much lower pumping efficiency for long-range sensing, which counterbalances the merit of DBA. In this Letter, pump modulation by multiple constant bandwidths was proposed and demonstrated. The ~98.9 km sensing with ~5 m spatial resolution and no use of optical pulse coding (OPC) was achieved by ~8 dBm Brillouin pump, which is lower by ~9 dB in theory by comparison with exponentially increased bandwidth modulation. Compared with traditional DBA-BOTDA, signal-to-noise ratio (SNR) enhancement with >4.6 dB was obtained. The flattened standard deviation (STD) of Brillouin frequency shift (BFS) (less than ~2 MHz) along the whole fiber was demonstrated.
060.4370 Nonlinear optics, fibers 
Chinese Optics Letters
2019, 17(1): 010603
Author Affiliations
Abstract
College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
The impacts of Brillouin pump depletion and nonlinear amplification in coded long-range Brillouin optical time-domain analysis (BOTDA) based on distributed Brillouin amplification (DBA) were studied. The error of Brillouin frequency shift (BFS) due to Brillouin pump depletion was compared for DBA-BOTDA using non-cyclic and cyclic coding. For non-cyclic coding, significant over- and under-shoots of BFS were found in the range with larger BFS variation, such as hot spot. The impact of Brillouin pump depletion can be reduced considerably by cyclic coding. Furthermore, to compensate the BFS error due to nonlinear amplification, a simple and effective log linearization was proposed and demonstrated.
060.2370 Fiber optics sensors 
Chinese Optics Letters
2018, 16(9): 090604

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!